GCE

## Physics A

## Advanced GCE G484

The Newtonian World

## Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010

Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

| Question | Expected Answers | Marks | Additional guidance |
| :---: | :---: | :---: | :---: |
| 1(a) | The magnitude of the impulse on each object is the same Total energy is conserved | $\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$ | For 3 or 4 ticks mark and deduct 1 mark for each error. |
| (b) (i) | Correct use of $1 / 2 \mathrm{mv}^{2}$ <br> Loss of $\mathrm{KE}=0.03(144-81)=1.9$ (or 1.89) $\mathbf{~ J}$ | $\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$ | 0.27 J scores $1^{\text {st }}$ mark <br> Do not allow 1.8 |
| (b) (ii) | Change in momentum $=(0.06 \times 12)+(0.06 \times 9)=1.26(\mathrm{Ns})$ <br> Average force=rate of change of momentum $=1.26 / 0.15=\mathbf{8 . 4}$ (or 8) $\mathbf{N}$ | $\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$ | Award 1 mark for 1.2 N ignore minus signs |
| (b) (iii) | 8.4 N (or - 8.4) | B1 | Allow ecf from (ii) |
| (c) (i) | ANY 3 of the following <br> particles move with rapid, random motion (WTTE) <br> elastic collisions <br> negligible (or zero) volume of atoms (compared with volume of container) no intermolecular forces (except during collisions)/all internal energy is KE collision time negligible (compared to time between collision). | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | Allow " gravitational force on molecules is negligible" Do not allow a bare "large number of particles". |
| (c) (ii) | molecules make collisions with walls/surface (WTTE) (hence) exerts a force on the wall (or each collision has a change of momentum) <br> Pressure = force/area | $\begin{aligned} & \mathrm{B} 1 \\ & \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | Do not allow a bare "molecules collide with each other" |
|  | Total | 13 |  |


| Question | Expected Answers | Marks | Additional guidance |
| :---: | :---: | :---: | :---: |
| 2 (a) (i) | Horizontal component of $L$ provides the centripetal force (WTTE) Vertical component of $L$ balances the weight (WTTE) | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ |  |
| (a) (ii) | $\begin{aligned} & F=\mathrm{mv}^{2} / \mathrm{r} \text { correct rearranged into } \mathrm{v}=\sqrt{ }(\mathrm{Fr} / \mathrm{m}) \\ & v=\sqrt{ }\left(1.8 \times 10^{6} \times 2000 / 1.2 \times 10^{5}\right)=\mathbf{1 7 3} \mathrm{m} \mathrm{~s}^{-1}(\text { or 170 }) \end{aligned}$ | $\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$ | Allow correct substitution of values into $\mathrm{F}=\mathrm{mv}^{2} / \mathrm{r}$ for C 1 mark |
| (b) | $\begin{aligned} & \mathrm{mv}^{2} / \mathrm{r}=\mathrm{GMm} / \mathrm{r}^{2} \\ & \mathrm{~T}=2 \pi \mathrm{r} / \mathrm{v} \\ & \text { Correct manipulation of equations to give } \mathrm{T}^{2}=\frac{4 \pi^{2} r^{3}}{\mathrm{GM}} \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Do not allow a bare $v^{2}=G M / r$ for the first mark - we need to see where this has come from. |
| (c) (i) | Equatorial orbit (WTTE) (QWC mark) <br> Period is 24h/1day/same as Earth OR moves from West to East (WTTE) | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ | QWC equatorial or equator must be spelled correctly |
| (c) (ii) | $\begin{aligned} & \text { Correct rearrangement of } \mathrm{T}^{2}=\left(4 \pi^{2} r^{3} / \mathrm{GM}\right) \text { to give } \mathrm{r}^{3}=\mathrm{T}^{2} \mathrm{GM} / 4 \pi^{2} \\ & \text { correct sub. } \mathrm{r}^{3}=\left\{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times\left(8.64 \times 10^{4}\right)^{2}\right\} / 4 \pi^{2}=7.57 \times 10^{22} \\ & \mathrm{r}=\mathbf{4 . 2 3} \times 10^{7} \mathbf{~ m}\left(\text { or } 4.2 \text { or } 4.3 \times 10^{7}\right) \end{aligned}$ | $\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$ | ( 1 day $=8.64 \times 10^{4} \mathrm{~s}$ is given on the data sheet). <br> For those who use $\mathrm{g}=\mathrm{GM} / \mathrm{r}^{2}$ with $\mathrm{g}=9.81$ award 1 mark for $\mathrm{r}=6.4 \times 10^{6} \mathrm{~m}$. |
|  | Total | 12 |  |


| Question | Expected Answers | Marks | Additional guidance |
| :---: | :---: | :---: | :---: |
| 3(a) | Acceleration is (directly) proportional to the displacement/distance (from the equilibrium position/central pt) <br> Acceleration is always directed towards the equilibrium position/central point. | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | Allow "fixed point" or "point" <br> Allow acc. is in opposite direction to <br> displacement (WTTE) <br> If formula is used: allow $\mathrm{a} \propto-\mathrm{x}$ for $1^{\text {st }}$ mark and $2^{\text {nd }}$ mark if x is stated as displacement. |
| (b) (i) | Curve symmetrical about energy axis with maximum at 18 zero at +0.04 and -0.04 | $\begin{aligned} & \mathrm{B} 1 \\ & \text { R1 } \end{aligned}$ | Ignore points where graphs cross Give bod if not labelled K but correct |
| (b) (ii) | Horizontal straight line passing 18 | B1 | Give bod if not labelled T but correct |
| (c) (i) | 0.04 m | B1 |  |
| (c) (ii) | $\begin{aligned} & 1 / 2 \mathrm{~m}\left(\mathrm{v}_{\max }\right)^{2}=0.018 \\ & \mathrm{v}_{\max }=\sqrt{ }(2 \times 0.018 / 0.12)=0.55 \mathrm{~ms}^{-1}(0.548) \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | Many will use 18 instead of 0.018 . This results in 17.3 and scores 1 mark. Allow ecf for cand's value of max KE. Do not allow 0.54 for second mark. |
| (c) (iii) | $\begin{aligned} & \text { correct use of } v_{\max }=2 \pi f \mathrm{~A} \\ & f=(0.55 / 0.04 \times 2 \pi)=2.2(\text { or } 2.19 \text { or } 2.18) \mathrm{Hz} \end{aligned}$ | $\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$ | Allow ecf for cand's values from (c)(i) and/or (c) (ii). E.g for $17.3 \mathrm{f}=68.8 \mathrm{~Hz}$. This scores 2 marks e.c.f. <br> Do not allow 2.1 |
| (d) | Award first mark for stating the 'driver' of the oscillations and the second mark for stating what is 'driven' i.e. oscillating useful applications: e.g. <br> Cooking: micro waves cause water molecules to resonate Woodwind: reed causes air column to resonate <br> Brass: lips cause air column to resonate <br> MRI: radio waves (in a magnetic field) cause nuclei/proton to resonate <br> Radios: radio waves cause electrons/current to resonate <br> Person on swing: intermittent pushes cause swing to resonate <br> problem: <br> Bridges: wind/walkers causes bridge to resonate <br> Vehicles: engine vibrations cause panels/mirrors to resonate Earthquakes: ground vibrating causes buildings to resonate | B1 <br> B1 <br> B1 <br> B1 | No marks to be awarded for a bare statement of the example e.g MRI. <br> Please allow any other valid examples. |
|  | Total | 14 |  |


| G484 | Mark Scheme |  | June 2010 |
| :---: | :---: | :---: | :---: |
| Question | Expected Answers | Marks | Additional guidance |
| 4 (a) (i) | Brownian (motion) (QWC mark) | B1 | QWC Brownian spelled correctly |
| (a) (ii) | ANY two from the following three: air molecules are moving in different directions/randomly with different speeds mass/size of air molecules is smaller than smoke particles | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | Answers that refer to smoke particles only cannot score the marks. |
| (b) (i) | $\text { vol }=(4 / 3) \pi r^{3}=5.58 \times 10^{-3}$ <br> correct sub into $\mathrm{pV}=\mathrm{nRT}$ i.e. with T as 290 K $\mathrm{n}=\left(2.6 \times 10^{5} \times 5.58 \times 10^{-3}\right) / 8.31 \times 290=0.602$ moles mass $=\mathrm{n} \times 0.028=0.0169 \mathrm{~kg}(0.016856)$ | $\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ | Allow ecf for wrong volume Allow use of $\mathrm{pV}=\mathrm{NkT}$ and $\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$ Allow ecf for cand's value for $n$ If $17^{\circ} \mathrm{C}$ used allow maximum of 2 marks for $n=10.3$ moles and $m=0.29 \mathrm{~kg}$ |
| (b) (ii) 1 | no net heat flow between objects (WTTE) | B1 | Allow "they are at the same temp." |
| (b) (ii) 2 | $\begin{aligned} & \text { correct use of } \mathrm{P} / \mathrm{T}=\text { constant: e.g. } \mathrm{P}=(273 / 290) \times 2.6 \times 10^{5} \\ & \mathrm{P}=\mathbf{2 . 4 5 \times 1 0 ^ { 5 }}\left(\text { or } 2.4 \times 10^{5} \text { or } 2.5 \times 10^{5}\right) \mathrm{Pa} \end{aligned}$ | $\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$ | Allow correct use of $\mathrm{pV}=\mathrm{nRT}$ |
|  | Total | 10 |  |


| Question | Expected Answers | Marks | Additional guidance |
| :---: | :---: | :---: | :---: |
| 5(a) (i) | Initial KE of car $=0.5 \times 970 \times 27^{2}=3.5 \times 10^{5} \mathbf{J}$ (353565J) | B1 |  |
| (a) (ii) | Work done $=$ Av Force $\times$ distance moved <br> Av Force $=3.5 \times 10^{5} \mathrm{~J} / 40=8.8 \times 10^{\mathbf{3}} \mathrm{N}($ or 8750 N$)$ <br> (or 353565/40 = 8836.7 N) <br> Assumption: no air resistance | $\begin{aligned} & \text { C1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$ | $\begin{aligned} & \text { If } v^{2}=u^{2}+2 \text { as is used. accept } \\ & a=0-27^{2} /(2 \times 40)=9.113 \mathrm{~ms}^{-2} \mathrm{C} 1 \\ & \mathrm{~F}=\mathrm{ma}=970 \times 9.11=8.84 \times 10^{3} \mathrm{~N} \text { A1 } \\ & \text { Allow air friction or drag } \end{aligned}$ |
| (b) (i) | correct use of $\mathrm{E}=\mathrm{mc} \Delta \theta$ : $3.5 \times 10^{5} / 4=1.2 \times 520 \times \Delta \theta$ $\Delta \theta=140^{\circ} \mathrm{C}$ (if 353565 is used $\Delta \theta=142^{\circ} \mathrm{C}$ ) | $\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$ | If cand. forgets to divide by 4 allow any value between 560 and 570 for 1 mark. |
| (b) (ii) | Air resistance will be acting (slowing down the car) (hence) reducing the KE of the car (WTTE) <br> The discs are hotter than the surroundings (hence) energy/heat will be lost from discs/brakes (WTTE) | M1 <br> A1 <br> B1 <br> B1 | Do not allow sound since only a tiny proportion of energy is lost in this way. Allow other valid comments as alternative ways of scoring one or both of the ' B ' marks: e.g. 'hot spots' on discs; discs are different. Try to credit a well argued case based upon correct physics- e.g. wheels locking. |
| (b) (iii) | Any valid suggestion: e.g. use a material with a higher s.h.c use a disc with a higher heat capacity Use discs of greater mass put holes in the discs (to increase air flow) | B1 | Confusion between shc and heat capacity should not be penalised. |
|  | Total | 11 |  |

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre

14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU


Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

